Entry tags:
3D белка за миллисекунду
Миллионер Давид Шоу (David Shaw) в исследовательском центре имени себя с командой сотрудников собрал компьютер Anton, разработанный специально под расчеты молекулярной динамики (МД) биологических молекул, и с его помощью провёл расчет динамики нескольких небольших белков длительностью в миллисекунду. Хотя для «непосвящённых» эта цифра может показаться смехотворной, никогда ещё планка вычислительных экспериментов в молекулярной биологии не была установлена столь высоко.

Современная биология без компьютеров как без рук — практически во всех молекулярных областях компьютерные (или «in silico») эксперименты позволяют получить важную информацию о происходящем на уровне отдельных молекул при помощи вычислительных алгоритмов. Один из них — метод молекулярной динамики (МД) — описывает молекулярные события «в реальном времени», и даже — гипотетически — позволяет проследить за процессом самопроизвольного сворачивания молекулы белка в нативную форму. Гипотетически — потому что до недавнего времени вычислительных мощностей суперкомпьютеров не хватало для моделирования в таком временном диапазоне, чтобы сравняться со временем, за которое молекулы белков сворачиваются в действительности. (В этой связи для теоретического предсказания пространственного строения белков используют не МД, а более «окольные» методы.)
Недавно в журнале Science опубликовали работу, в которой описаны расчеты МД нескольких белковых молекул в водном окружении длительностью 0.1–1 миллисекунды (а миллисекунды (10−3 с) — это как раз то время, за которое многие белки сворачиваются в реальности). При этом все молекулы в этой работе были заданы максимально детально (полно-атомное описание). Траектория такой длительности позволила авторам «в реальном времени» наблюдать процесс сворачивания небольших α-спирального (виллин) и β-структурного белков (FiP35), причём за это время было отмечено несколько актов сворачивания-разворачивания. Для более крупного белка — ингибитора бычьего панкреатического трипсина (БПТИ) — получены более скромные результаты: вблизи нативного состояния проследили конформационные переходы, по ряду параметров соответствующие происходящим в реальности. В результате виртуального сворачивания получены модели виллина и FiP35, максимально близко соответствующие экспериментальным структурам. Наблюдаемая конформационная динамика БПТИ также хорошо согласуется с имеющимися данными спектроскопии ЯМР.
Читать целиком на Biomolecula.ru
Современная биология без компьютеров как без рук — практически во всех молекулярных областях компьютерные (или «in silico») эксперименты позволяют получить важную информацию о происходящем на уровне отдельных молекул при помощи вычислительных алгоритмов. Один из них — метод молекулярной динамики (МД) — описывает молекулярные события «в реальном времени», и даже — гипотетически — позволяет проследить за процессом самопроизвольного сворачивания молекулы белка в нативную форму. Гипотетически — потому что до недавнего времени вычислительных мощностей суперкомпьютеров не хватало для моделирования в таком временном диапазоне, чтобы сравняться со временем, за которое молекулы белков сворачиваются в действительности. (В этой связи для теоретического предсказания пространственного строения белков используют не МД, а более «окольные» методы.)
Недавно в журнале Science опубликовали работу, в которой описаны расчеты МД нескольких белковых молекул в водном окружении длительностью 0.1–1 миллисекунды (а миллисекунды (10−3 с) — это как раз то время, за которое многие белки сворачиваются в реальности). При этом все молекулы в этой работе были заданы максимально детально (полно-атомное описание). Траектория такой длительности позволила авторам «в реальном времени» наблюдать процесс сворачивания небольших α-спирального (виллин) и β-структурного белков (FiP35), причём за это время было отмечено несколько актов сворачивания-разворачивания. Для более крупного белка — ингибитора бычьего панкреатического трипсина (БПТИ) — получены более скромные результаты: вблизи нативного состояния проследили конформационные переходы, по ряду параметров соответствующие происходящим в реальности. В результате виртуального сворачивания получены модели виллина и FiP35, максимально близко соответствующие экспериментальным структурам. Наблюдаемая конформационная динамика БПТИ также хорошо согласуется с имеющимися данными спектроскопии ЯМР.
Читать целиком на Biomolecula.ru